Handwritten Digit Recognition using Convolutional Neural Networks and Gabor filters

نویسندگان

  • Andrés Calderón
  • Sergio Roa
  • Jorge Victorino
چکیده

In this article, the task of classifying handwritten digits using a class of multilayer feedforward network called Convolutional Network is considered. A convolutional network has the advantage of extracting and using features information, improving the recognition of 2D shapes with a high degree of invariance to translation, scaling and other distortions. In this work, a novel type of convolutional network was implemented using Gabor filters as feature extractors at the first layer. A backpropagation algorithm specifically adapted to the problem was used in the training phase for the rest of layers. The training and test sets were taken from the MNIST database. A boosting method was applied to improve the results by using experts that learn different distributions of the training set and combining its results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Handwritten Bangla Digit Recognition Using Deep Learning

In spite of the advances in pattern recognition technology, Handwritten Bangla Character Recognition (HBCR) (such as alpha-numeric and special characters) remains largely unsolved due to the presence of many perplexing characters and excessive cursive in Bangla handwriting. Even the best existing recognizers do not lead to satisfactory performance for practical applications. To improve the perf...

متن کامل

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

متن کامل

Simplifying ConvNets for Fast Learning

In this paper, we propose different strategies for simplifying filters, used as feature extractors, to be learnt in convolutional neural networks (ConvNets) in order to modify the hypothesis space, and to speed-up learning and processing times. We study two kinds of filters that are known to be computationally efficient in feed-forward processing: fused convolution/sub-sampling filters, and sep...

متن کامل

Recognition of Handwritten Digits and Human Faces by Convolutional Neural Networks

Convolutional neural networks provide an eecient method to constrain the complexity of feedforward neural networks by weightsharing. This network topology has been applied in particular to image classiication when raw images are to be classi-ed without preprocessing. In this paper two variations of convolutional networks-Neocognitron and Neoperceptron-are compared with classiiers based on fully...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003